朔州視聽網

大數據時代

來源:朔州視聽網編輯:2016-02-10 查看數0

《大數據時代》是國外大數據研究的先河之作,本書作者維克托·邁爾·舍恩伯格被譽為"大數據商業應用第一人",擁有在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多個互聯網研究重鎮任教的經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。

內容介紹

《大數據時代》是一本英國學者維克托·邁爾·舍恩伯格做編寫的,他為譽為“大數據商業應用”的第一人。《大數據時代》這本書具有非常前瞻性的指出了大數據目前為我們生活、思維、工作所帶來的改變,大數據時代的開啟是一個時代的重要的轉型,這本書分別從三個部分來講述了大數據時代的思維變革和商業變革以及管理上的變革。[1]《大數據時代》[1]是國外大數據研究的先河之作,本書作者維克托 邁爾 舍恩伯格被譽為“大數據商業應用第一人”,擁有在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多個互聯網研究重鎮任教的經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。

《大數據時代》這本書里面對于大數據時代變革的例子舉了很多,比如在公共衛生、在商業服務領域方面。而這本書也提到了關于數據的擁有權的問題、隱私性保護,但是相比起來,新科技為我們帶來的改變是大于存在的問題。

《大數據時代》這本書絕對是一般200%的好書。首先,作者就拋出了大數據時代的數據處理的三大改變:數據不要抽樣要全體,做事需要的是效率而不是精確,要相關性不要因果。接著,從萬事萬物數據化和數據交叉復用的巨大價值兩個方面,講述驅動大數據戰車在材質和智力方面向前滾動的最根本動力;最后,作者冷靜描繪了大數據帝國前夜的脆弱和不安,包括產業生態環境、數據安全隱私、信息公正公開等問題。

維克托·邁爾·舍恩伯格在書中前瞻性地指出,大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,并用三個部分講述了大數據時代的思維變革、商業變革和管理變革。

維克托最具洞見之處在于,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。這就顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。

本書認為大數據的核心就是預測。大數據將為人類的生活創造前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。書中展示了谷歌、微軟、亞馬遜、IBM、蘋果、facebook、twitter、VISA等大數據先鋒們最具價值的應用案例。

作者介紹

維克托·邁爾-舍恩伯格:大數維克托·邁爾·舍恩伯格(Viktor Mayer-Sch?nberger),他是十余年潛心研究數據科學的技術權威,他是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。他曾先后任教于世界最著名的幾大互聯網研究學府。現任牛津大學網絡學院互聯網治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人,哈佛國家電子商務研究中網絡監管項目負責人;曾任新加坡國立大學李光耀學院信息與創新策略研究中心主任。并擔任耶魯大學、芝加哥大學、弗吉尼亞大學、圣地亞哥大學、維也納大學的客座教授。

他的學術成果斐然,有一百多篇論文公開發表在《科學》《自然》等著名學術期刊上,他同時也是哈佛大學出版社、麻省理工出版社、通信政策期刊、美國社會學期刊等多家出版機構的特約評論員。

他是備受眾多世界知名企業信賴的信息權威與顧問。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業;而他自己早在1986年與1995年就擔任兩家軟件公司的總裁兼CEO,由他的公司開發的病毒通用程序,成為當時奧地利最暢銷的軟件產品。1991年躋身奧地利軟件企業家前5名之列,2000年 被評為奧地利薩爾斯堡州的年度人物。

他也是眾多機構和國家政府高層的信息政策智囊。他一直專注于信息安全與信息政策與戰略的研究,是歐盟專家之一,也是世界經濟論壇、馬歇爾計劃基金會等重要機構的咨詢顧問,同時他以大數據的全球視野,熟悉亞洲信息產業的發展與戰略布局,先后擔任新加坡商務部高層、文萊國防部高層、科威特商務部高層、迪拜及中東政府高層的咨詢顧問。

所著《大數據》一書是開國外大數據系統研究的先河之作,而在這之前,他已經在《經濟學人》上和數據編輯肯尼斯.尼爾-庫克耶一起,發表了長達14頁的大數據專題文章,成為最早洞見大數據時代趨勢的數據科學家之一。而他的《刪除》一書,同樣被認為是關于數據的開創性作品,并且創造了“被遺忘的權利”的概念而在媒體圈和法律圈得到廣泛運用。該書獲得美國政治科學協會頒發的唐·K·普賴斯獎,以及媒介環境學會頒發的馬歇爾·麥克盧漢獎。同時受到《連線》、《自然》《華爾街日報》《紐約時報》等各大權威媒體廣泛好評。

目錄章節

引言 正在發生的生活、工作與思維的大變革

第一部分 大數據時代的思維變革

第1章 更多:不是隨機樣本,而是所有數據

第2章 更雜:不是精確性,而是混雜性

第3章 更好:不是因果關系,而是相關關系

第二部分 大數據時代的商業變革

第4章 數據化:一切皆可“量化”

第5章 價值:“取之不盡,用之不竭”的數據創新

第6章 角色定位: 數據、技術與思維的三足鼎立

第三部分 大數據時代的管理變革

第7章 風險:讓數據主宰一切的隱憂

第8章 掌控:自由與責任并舉的數據管理

結語 已經發生的未來

文章節選

在甲型H1N1流感爆發的幾周前,互聯網巨頭谷歌公司的工程師們在《自然》雜志上發表了一篇引人注目的論文。它令公共衛生官員們和計算機科學家們感到震驚。文中解釋了谷歌為什么能夠預測冬季流感的傳播:不僅是全美范圍的傳播,而且可以具體到特定的地區和州。谷歌通過觀察人們在網上的搜索記錄來完成這個預測,而這種方法以前一直是被忽略的。谷歌保存了多年來所有的搜索記錄,而且每天都會收到來自全球超過30億條的搜索指令, 如此龐大的數據資源足以支撐和幫助它完成這項工作。
發現能夠通過人們在網上檢索的詞條辨別出其是否感染了流感后,谷歌公司把五千萬條美國人最頻繁檢索的詞條和美國疾控中心在03年至08年間季節性流感傳播時期的數據進行了比較。其他公司也曾試圖確定這些相關的詞條,但是他們缺乏像谷歌公司一樣龐大的數據資源、處理能力和統計技術。

雖然谷歌公司的員工猜測,特定的檢索詞條是為了在網絡上得到關于流感的信息,如“哪些是治療咳嗽和發熱的藥物”,但是找出這些詞條并不是重點,他們也不知道哪些詞條更重要,更關鍵的是,他們建立的系統并不依賴于這樣的語義理解。他們設立的這個系統唯一關注的就是特定檢索詞條的頻繁使用與流感在時間和空間上的傳播之間的聯系。谷歌公司為了測試這些檢索詞條,總共處理了4.5億個不同的數字模型。在將得出的預測與07年、08年美國疾控中心記錄的實際流感病例進行對比后,谷歌公司發現,他們的軟件發現了45條檢索詞條的組合,一旦將它們用于一個數學模型,他們的預測與官方數據的相關性高達97%。和疾控中心一樣,他們也能判斷出流感是從哪里傳播出來的,而且他們的判斷非常及時,不會像疾控中心一樣要在流感爆發一兩周之后才可以做到。

所以,09年甲型H1N1流感爆發的時候,與習慣性滯后的官方數據相比,谷歌成為了一個更有效、更及時的指示標。公共衛生機構的官員獲得了非常有價值的數據信息。驚人的是,谷歌公司的方法甚至不需要分發口腔試紙和聯系醫生——它是建立在大數據的基礎之上的。這是當今社會所獨有的一種新型能力:以一種前所未有的方式,通過對海量數據進行分析,獲得有巨大價值的產品和服務,或深刻的洞見。基于這樣的技術理念和數據儲備,下一次流感來襲的時候,世界將會擁有一種更好的預測工具,以預防流感的傳播。

相關介紹

進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數  大數據時代來臨[1]據,并命名與之相關的技術發展與創新。它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。

數據正在迅速膨脹并變大,它決定著企業的未來發展,雖然現在企業可能并沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。

正如《紐約時報》2012年2月的一篇專欄中所稱,“大數據”時代已經降臨,在商業、經濟及其他領域中,決策將日益基于數據和分析而作出,而并非基于經驗和直覺。

哈佛大學社會學教授加里·金說:“這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。”

大數據

大數據,或稱巨量數據、海量數據;是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基于云計算的數據處理與應用模式,通過數據的集成共享,交叉復用形成的智力資源和知識服務能力。

有研究機構如此定義“大數據”:“大數據”是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從某種程度上說,大數據是數據分析的前沿技術。簡言之,從各種各樣類型的數據中,快速獲得有價值信息的能力,就是大數據技術。

最早提出“大數據”時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:“數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對于海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈余浪潮的到來。” “大數據”在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注.

隨著云時代的來臨,大數據(Big data)也吸引了越來越多的關注。著云臺的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型數據庫用于分析時會花費過多時間和金錢。大數據分析常和云計算聯系到一起,因為實時的大型數據集分析需要像MapReduce一樣的框架來向數十、數百或甚至數千的電腦分配工作。

“大數據”在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網絡行為數據。這些數據的規模是如此龐大,以至于不能用G或T來衡量,大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。

大數據到底有多大?一組名為“互聯網上一天”的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當于美國兩年的紙質信件數量);發出的社區帖子達200萬個(相當于《時代》雜志770年的文字量);賣出的手機為37.8萬臺,高于全球每天出生的嬰兒數量37.1萬……

截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當于全球每人產生200GB以上的數據。而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所有話的數據量大約是5EB。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。而到了2020年,全世界所產生的數據規模將達到今天的44倍。

用數據說話是數字化時代的特征。但在這個信息爆炸的時代,人們隨時隨地受到各種數據的“轟炸”,有限的注意力被各種碎片化的內容“瓜分”。那么如何才能獲得想要的數據信息呢?這需要數據足夠“聰明”,海量的原始數據只有經過分類、加工、整理、分析才能滿足不同的要求。而要處理海量的數據,就需要大數據技術的支持。

任何數據分析都需要數據源,大數據尤甚。互聯網公司通過搜索引擎、訪問記錄、App追蹤等技術手段可以獲得大量的用戶瀏覽信息,但這些信息的收集、存儲、提取、訪問等環節都不可能向大眾公開,相關數據的使用規則目前還缺乏法律規范。對普通人而言,獲得公開、免費、準確的數據來源似乎成為一種奢望,但企業和政府的數據公開的步伐已經邁出。

四個特征

數據量大

第一個特征是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。

類型繁多

第二個特征是數據類型繁多。包括網絡日志、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。

價值密度低

第三個特征是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器算法更迅速地完成數據的價值“提純”,是大數據時代亟待解決的難題。

速度快時效高

第四個特征是處理速度快,時效性要求高。這是大數據區分于傳統數據挖掘最顯著的特征。

既有的技術架構和路線,已經無法高效處理如此海量的數據,而對于相關組織來說,如果投入巨大采集的信息無法通過及時處理反饋有效信息,那將是得不償失的。可以說,大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。

用戶評論

已有0人評論,0人參與
    3d福彩复式投注 海南环岛赛车 3月5日福彩中奖号码 福建十一选五开奖信息 网上棋牌网站搜索 小白赚钱宝典 作者 那时烟花 买五分彩技巧 平安符赚钱吗 幸运赛车视频 中信证券股票分析论文 双色球网上官方网站 吉林11选5直播 海南飞鱼游戏 河南11选5玩法 舟山飞鱼基本走势图 制造火纸赚钱吧 山东11选5走势图acaiwang